Evolutionary Multiobjective Optimization (EMO)

We consider a multi-objective problem of the form:

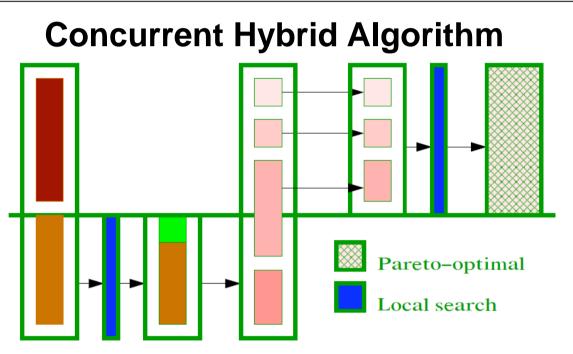
minimize $(f_1(X), f_2(X), ..., f_k(X))$ subject to $X \in S$

Involving $k \ge 2$ conflicting objectives $f_i : \Re^n \to \Re$ to be minimized simultaneously. The decision (variable) vectors $X = (x_1, x_2, x_3, ..., x_n)^T$

belong to the feasible set $\,S$.

Scope of Research:

- Bring together two diverse fields (EMO and MCDM), sharing common objective of solving multiobjective optimization problems.
- Hybrid EMO Algorithms using better scalarizing functions from MCDM.
- Efficient and practically viable EMO algorithms.



Salient Features:

- An efficient concurrent hybrid algorithm proposed.
- Achievement scalarizing function used for scalarization of objectives, as their optima are always Pareto optimal.
- Hybrid algorithms have **Novel termination criteria** based on optimal value of scalarization function.

•A saw tooth function for local search, which maintains

UPS-EMO Algorithm

- 1. Create initial population.
- 2. Produce *n* children with randomly selected parents using point generation mechanism of Differential Evolution (DE).
- 3. Combine current population with child population.
- 4. Filter dominated solutions away, and use filtered population as current population.
- 5. If stopping condition is not met, continue to step 2.

Salient Features:

• Unrestricted Population Size, (hence the acronym UPS-EMO).

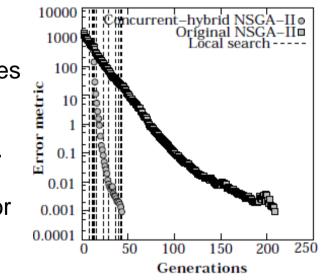
- Growing population contains all non-dominated solutions found during the optimization.
 - Continuous convergence to the non-dominated set because the population cannot oscillate.
 - Improved efficiency in the beginning of the process (small population converges faster).

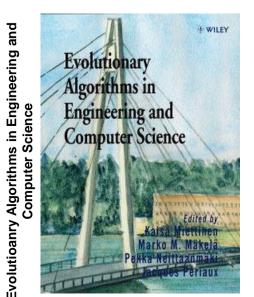
exploration-exploitation balance.

Test	Se	rial approa	ich	Concurrent approach		
Problem	n Best	Median	Worst	Best	Median	Worst
ZDT1	30,083	31,043	33,468	13,328	14,518	16,991
	(0.9289)	(0.9283)	(0.9285)	(0.9214)	(0.9285)	(0.9286)
ZDT2	29,384	31,760	32,344	1,861	13,748	15,716
	(0.6526)	(0.6530)	(0.6532)	(0.2100)	(0.6513)	(0.6510)
ZDT3	33,691	37,325	38,545	16,595	20,866	29,628
	(0.7738)	(0.7742)	(0.7742)	(0.7155)	(0.7744)	(0.7744)
ZDT4	35,006	54,214	63,584	34,459	37,724	43,142
	(0.9274)	(0.9284)	(0.9286)	(0.9286)	(0.8982)	(0.9286)
3-DTLZ	1 201,957	252,952	351,954	66,369	146,506	290,792
	(1.664)	(1.1965)	(1.1964)	(1.1995)	(1.1931)	(1.2002)
3-DTLZ	2 35,757	43,722	70,606	26,665	31,604	36,006
	(0.8694)	(0.8813)	(0.8687)	(0.8705)	(0.8765)	(0.8803)
4-DTLZ	2 69,449	93,835	128,794	61,028	74,187	194,581
	(1.0861)	(1.0701)	(1.0750)	(1.0960)	(1.0834)	(1.0782)

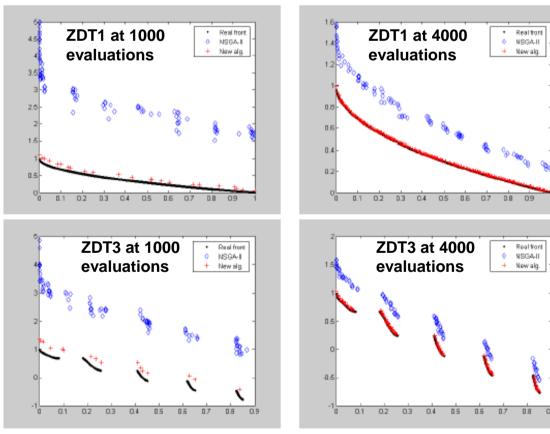
Results:

- Concurrent Algorithm consumes less function evaluations.
- Exact gradient shall further reduce the function evaluations.
- Concurrent-hybrid NSGA-II, converges faster to desired error metric as compared to original NSGA-II.





 Better capability to capture the characteristics of the Pareto optimal set (higher number of points in the end).



Result:

• A computationally efficient novel EMO algorithm proposed and shown to be efficient on a number of test problems.

Researchers:							
 Dr. Kaisa Miettinen 	Professor	 Dr. Timo Aittokoski 	Researcher				
• Dr. Jussi Hakanen	Senior assistant	 Karthik Sindhya 	Doctoral student				
Organizers of I	Dagstuhl Sem	inars on Multi-Objecti	ve Optimization				
International Collaborators and Visitors:							
Dref Kalvenner Deb (IIT Kenner), Dref Lether Thisle and Dref, Feler (FTH Zurich)							

Prof. Kalyanmoy Deb (IIT Kanpur), Prof. Lothar Thiele and Prof. Eckart Zitzler (ETH Zurich), Prof. Nirupam Chakraborti (IIT Kharagpur), Julian Molina (Univ. Of Malaga) etc.

UNIVERSITY OF JYVÄSKYLÄ

Industrial Optimization Group,

Department of Mathematical Information Technology, P.O. Box 35 (Agora), FI-40014 University of Jyväskylä, Finland